Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47.360
Filtrar
1.
Zhonghua Bing Li Xue Za Zhi ; 53(4): 364-369, 2024 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-38556820

RESUMEN

Objective: To investigate the clinicopathological features of Erdheim-Chester disease (ECD) initially diagnosed at extraskeletal locations. Methods: Clinical and pathological data of four cases of ECD diagnosed initially in extraskeletal locations were collected at Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, from January 2013 to June 2023. BRAF V600E gene was detected by reverse transcription polymerase chain reaction (RT-PCR). Pertinent literatures were reviewed. Results: Four ECD patients included two males and two females ranging in ages from 2 years 11 months to 69 years. The lesions located in the lung (two cases), central nervous system (one case), and the testicle (one case) were collected in the study. One patient had occasional fever at night, one had nausea and vomiting, and two were asymptomatic. Radiologically, the two pulmonary ECD showed diffuse ground-glass nodules in both lungs, and the lesions in central nervous system and testicle both showed solid masses. Microscopically, there were infiltration of foamy histiocyte-like cells and multinucleated giant cells in a fibrotic background, accompanied by varying amounts of lymphocytes and plasma cells. The infiltration of tumor cells in pulmonary ECD was mainly seen in the subpleural area, interlobular septa, and perivascular and peribronchiolar areas. The fibrosis was more pronounced in the pleura and interlobular septa, and less pronounced in the alveolar septa. Immunohistochemical staining showed that all tumor cells expressed CD68, CD163 and Fô€ƒ¼a; one case showed S-100 expression; three cases were positive for BRAF V600E; all were negative for CD1α and Langerin. RT-PCR in all four cases showed BRAF V600E gene mutation. Conclusions: Extraskeletal ECD is often rare and occult, and could be easily misdiagnosed, requiring biopsy confirmation. The radiologic findings of pulmonary ECD is significantly different from other types of ECD, and the histopathological features of pronounced infiltration in the subpleura area, interlobular septa, perivascular and peribronchiolar areas can be helpful in the differential diagnosis from other pulmonary diseases. Detection of BRAF V600E gene mutation by RT-PCR and its expression by immunohistochemical staining are also helpful in the diagnosis.


Asunto(s)
Enfermedad de Erdheim-Chester , Masculino , Femenino , Humanos , Enfermedad de Erdheim-Chester/patología , Proteínas Proto-Oncogénicas B-raf/genética , Pulmón/patología , Histiocitos/patología , Sistema Nervioso Central/patología , Mutación
2.
Cell Mol Life Sci ; 81(1): 161, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565808

RESUMEN

The susceptibility to autoimmune diseases is conditioned by the association of modest genetic alterations which altogether weaken self-tolerance. The mechanism whereby these genetic interactions modulate T-cell pathogenicity remains largely uncovered. Here, we investigated the epistatic interaction of two interacting proteins involved in T Cell Receptor signaling and which were previously associated with the development of Multiple Sclerosis. To this aim, we used mice expressing an hypomorphic variant of Vav1 (Vav1R63W), combined with a T cell-conditional deletion of Themis. We show that the combined mutations in Vav1 and Themis induce a strong attenuation of the severity of Experimental Autoimmune Encephalomyelitis (EAE), contrasting with the moderate effect of the single mutation in each of those two proteins. This genotype-dependent gradual decrease of EAE severity correlates with decreased quantity of phosphorylated Vav1 in CD4 T cells, establishing that Themis promotes the development of encephalitogenic Tconv response by enhancing Vav1 activity. We also show that the cooperative effect of Themis and Vav1 on EAE severity is independent of regulatory T cells and unrelated to the impact of Themis on thymic selection. Rather, it results from decreased production of pro-inflammatory cytokines (IFN-γ, IL-17, TNF and GM-CSF) and reduced T cell infiltration in the CNS. Together, our results provide a rationale to study combination of related genes, in addition to single gene association, to better understand the genetic bases of human diseases.


Asunto(s)
Linfocitos T CD4-Positivos , Encefalomielitis Autoinmune Experimental , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos/metabolismo , Sistema Nervioso Central/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Inflamación , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-vav/genética , Proteínas Proto-Oncogénicas c-vav/metabolismo , Virulencia
3.
Rev Med Virol ; 34(3): e2534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588024

RESUMEN

Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.


Asunto(s)
Complejo SIDA Demencia , Enfermedades del Sistema Nervioso Central , Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/epidemiología , Enfermedades Neuroinflamatorias , Complejo SIDA Demencia/tratamiento farmacológico , Complejo SIDA Demencia/epidemiología , Complejo SIDA Demencia/psicología , Enfermedades del Sistema Nervioso Central/etiología , Sistema Nervioso Central
4.
Front Immunol ; 15: 1370107, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596673

RESUMEN

Tissue damage elicits a wound healing response of inflammation and remodeling aimed at restoring homeostasis. Dysregulation of wound healing leads to accumulation of effector cells and extracellular matrix (ECM) components, collectively termed fibrosis, which impairs organ functions. Fibrosis of the central nervous system, neurofibrosis, is a major contributor to the lack of neural regeneration and it involves fibroblasts, microglia/macrophages and astrocytes, and their deposited ECM. Neurofibrosis occurs commonly across neurological conditions. This review describes processes of wound healing and fibrosis in tissues in general, and in multiple sclerosis in particular, and considers approaches to ameliorate neurofibrosis to enhance neural recovery.


Asunto(s)
Esclerosis Múltiple , Humanos , Cicatrización de Heridas , Sistema Nervioso Central , Fibrosis , Biología
6.
Zhonghua Xue Ye Xue Za Zhi ; 45(2): 190-194, 2024 Feb 14.
Artículo en Chino | MEDLINE | ID: mdl-38604797

RESUMEN

Clinical data of 15 primary central nervous system lymphoma (PCNSL) children aged ≤18 years admitted to our hospital between May 2013 to May 2023 were retrospectively analyzed. Our goal was to summarize the clinical features of children and investigate the therapeutic effect of a high-dose methotrexate (HD-MTX) based chemotherapy regimen on this disease. The male-to-female ratio was 2.7∶1, and the median age was 7.2 (2.3-16.4) years at diagnosis. The initial clinical symptoms were primarily cranial hypertension, with imaging findings revealing multiple lesions. Pediatric PCNSL with normal immune function has a favorable prognosis with HD-MTX-based chemotherapy. Patients with a stable disease can be treated with minimal or no maintenance. HD-MTX-based chemotherapy remains effective when the disease progresses or recurs after an initial course of non-HD-MTX-based chemotherapy.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma , Humanos , Masculino , Femenino , Niño , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Estudios Retrospectivos , Recurrencia Local de Neoplasia/inducido químicamente , Recurrencia Local de Neoplasia/tratamiento farmacológico , Metotrexato/uso terapéutico , Linfoma/tratamiento farmacológico , Sistema Nervioso Central/patología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
7.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1154-1163, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621962

RESUMEN

Ischemic stroke is divided into acute phase, subacute phase, and recovery phase, with different pathological and physiological characteristics manifested at each stage. Among them, immune and inflammatory reactions persist for several days and weeks after ischemia. Ischemic stroke not only triggers local inflammation in damaged brain regions but also induces a disorder in the immune system, thereby promoting neuroinflammation and exacerbating brain damage. Therefore, conducting an in-depth analysis of the interaction between the central nervous system and the immune system after ischemic stroke, intervening in the main factors of the interaction between them, blocking pathological cascades, and thereby reducing brain inflammation have become the treatment strategies for ischemic stroke. This study summarizes and sorts out the interaction pathways between the central nervous system and the immune system. The impact of the central nervous system on the immune system can be analyzed from the perspective of the autonomic nervous system, the hypothalamic-pituitary-adrenal axis(HPA), and local inflammatory stimulation. The impact of the immune system on the central nervous system can be analyzed from the dynamic changes of immune cells. At the same time, the relevant progress in the prevention and treatment of traditional Chinese medicine(TCM) is summarized, so as to provide new insights for the analysis of complex mechanisms of TCM in preventing and treating ischemic stroke.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Medicina Tradicional China , Sistema Hipotálamo-Hipofisario/patología , Sistema Hipófiso-Suprarrenal/patología , Sistema Nervioso Central , Isquemia Encefálica/terapia , Sistema Inmunológico , Inflamación
8.
Methods Mol Biol ; 2782: 167-173, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38622401

RESUMEN

Microglia and oligodendrocyte precursor cells (OPCs) are critical glia subsets in the central nervous system (CNS) and are actively engaged in a body of diseases, such as stroke, Alzheimer's disease, multiple sclerosis, etc. Microglia and OPC serve as compelling tools for the study of CNS diseases as well as the repair and damage of myelin sheath in vitro. In this protocol, we summarized a method which is capable of using the same batch of new-born mice to isolate and culture microglia and OPCs. It integrates the characteristics of practicality, convenience, and efficiency, providing a convenient, easy, and reliable technique for research.


Asunto(s)
Microglía , Células Precursoras de Oligodendrocitos , Ratones , Animales , Diferenciación Celular/fisiología , Vaina de Mielina , Sistema Nervioso Central , Oligodendroglía
9.
CNS Drugs ; 38(5): 349-373, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580795

RESUMEN

Neurotropic viruses may cause meningitis, myelitis, encephalitis, or meningoencephalitis. These inflammatory conditions of the central nervous system (CNS) may have serious and devastating consequences if not treated adequately. In this review, we first summarize how neurotropic viruses can enter the CNS by (1) crossing the blood-brain barrier or blood-cerebrospinal fluid barrier; (2) invading the nose via the olfactory route; or (3) invading the peripheral nervous system. Neurotropic viruses may then enter the intracellular space of brain cells via endocytosis and/or membrane fusion. Antiviral drugs are currently used for different viral CNS infections, even though their use and dosing regimens within the CNS, with the exception of acyclovir, are minimally supported by clinical evidence. We therefore provide considerations to optimize drug treatment(s) for these neurotropic viruses. Antiviral drugs should cross the blood-brain barrier/blood cerebrospinal fluid barrier and pass the brain cellular membrane to inhibit these viruses inside the brain cells. Some antiviral drugs may also require intracellular conversion into their active metabolite(s). This illustrates the need to better understand these mechanisms because these processes dictate drug exposure within the CNS that ultimately determine the success of antiviral drugs for CNS infections. Finally, we discuss mathematical model-based approaches for optimizing antiviral treatments. Thereby emphasizing the potential of CNS physiologically based pharmacokinetic models because direct measurement of brain intracellular exposure in living humans faces ethical restrictions. Existing physiologically based pharmacokinetic models combined with in vitro pharmacokinetic/pharmacodynamic information can be used to predict drug exposure and evaluate efficacy of antiviral drugs within the CNS, to ultimately optimize the treatments of CNS viral infections.


Asunto(s)
Enfermedades Virales del Sistema Nervioso Central , Virus , Humanos , Enfermedades Virales del Sistema Nervioso Central/tratamiento farmacológico , Sistema Nervioso Central , Encéfalo , Barrera Hematoencefálica , Antivirales/farmacología , Antivirales/uso terapéutico
10.
Neurol Clin ; 42(2): 389-432, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38575258

RESUMEN

Vasculitis refers to heterogeneous clinicopathologic disorders that share the histopathology of inflammation of blood vessels. Unrecognized and therefore untreated, vasculitis of the nervous system leads to pervasive injury and disability making this a disorder of paramount importance to all clinicians. Headache may be an important clue to vasculitic involvement of central nervous system (CNS) vessels. CNS vasculitis may be primary, in which only intracranial vessels are involved in the inflammatory process, or secondary to another known disorder with overlapping systemic involvement. Primary neurologic vasculitides can be diagnosed with assurance after intensive evaluation that incudes tissue confirmation whenever possible.


Asunto(s)
Cefalea , Vasculitis del Sistema Nervioso Central , Humanos , Cefalea/diagnóstico , Cefalea/etiología , Vasculitis del Sistema Nervioso Central/complicaciones , Vasculitis del Sistema Nervioso Central/diagnóstico , Vasculitis del Sistema Nervioso Central/patología , Sistema Nervioso Central/patología , Inflamación
11.
J Neuroinflammation ; 21(1): 91, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609999

RESUMEN

OBJECTIVE: Soluble CD27 is a promising cerebrospinal fluid inflammatory biomarker in multiple sclerosis. In this study, we investigate relevant immune and neuro-pathological features of soluble CD27 in multiple sclerosis. METHODS: Protein levels of soluble CD27 were correlated to inflammatory cell subpopulations and inflammatory cytokines and chemokines detected in cerebrospinal fluid of 137 patients with multiple sclerosis and 47 patients with inflammatory and non-inflammatory neurological disease from three independent cohorts. Production of soluble CD27 was investigated in cell cultures of activated T and B cells and CD27-knockout T cells. In a study including matched cerebrospinal fluid and post-mortem brain tissues of patients with multiple sclerosis and control cases, levels of soluble CD27 were correlated with perivascular and meningeal infiltrates and with neuropathological features. RESULTS: We demonstrate that soluble CD27 favours the differentiation of interferon-γ-producing T cells and is released through a secretory mechanism activated by TCR engagement and regulated by neutral sphingomyelinase. We also show that the levels of soluble CD27 correlate with the representation of inflammatory T cell subsets in the CSF of patients with relapsing-remitting multiple sclerosis and with the magnitude of perivascular and meningeal CD27 + CD4 + and CD8 + T cell infiltrates in post-mortem central nervous system tissue, defining a subgroup of patients with extensive active inflammatory lesions. INTERPRETATION: Our results demonstrate that soluble CD27 is a biomarker of disease activity, potentially informative for personalized treatment and monitoring of treatment outcomes.


Asunto(s)
Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Linfocitos T CD8-positivos , Sistema Nervioso Central , Biomarcadores
12.
Molecules ; 29(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38611758

RESUMEN

Alzheimer's disease (AD) is a complex degenerative disease of the central nervous system that is clinically characterized by a progressive decline in memory and cognitive function. The pathogenesis of AD is intricate and not yet fully understood. Neuroinflammation, particularly microglial activation-mediated neuroinflammation, is believed to play a crucial role in increasing the risk, triggering the onset, and hastening the progression of AD. Modulating microglial activation and regulating microglial energy metabolic disorder are seen as promising strategies to intervene in AD. The application of anti-inflammatory drugs and the targeting of microglia for the prevention and treatment of AD has emerged as a new area of research interest. This article provides a comprehensive review of the role of neuroinflammation of microglial regulation in the development of AD, exploring the connection between microglial energy metabolic disorder, neuroinflammation, and AD development. Additionally, the advancements in anti-inflammatory and microglia-regulating therapies for AD are discussed.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Microglía , Enfermedades Neuroinflamatorias , Sistema Nervioso Central , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612597

RESUMEN

Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.


Asunto(s)
Analgésicos Opioides , Imidazoles , Naftalenos , Nitrocompuestos , Sulfóxidos , Traumatismos del Sistema Nervioso , Humanos , Animales , Ratones , Ratas , Maraviroc , Sistema Nervioso Central , Sistema Nervioso Periférico
14.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612605

RESUMEN

Central nervous system (CNS) damage leads to severe neurological dysfunction as a result of neuronal cell death and axonal degeneration. As, in the mature CNS, neurons have little ability to regenerate their axons and reconstruct neural loss, demyelination is one of the hallmarks of neurological disorders such as multiple sclerosis (MS). Unfortunately, remyelination, as a regenerative process, is often insufficient to prevent axonal loss and improve neurological deficits after demyelination. Currently, there are still no effective therapeutic tools to restore neurological function, but interestingly, emerging studies prove the beneficial effects of lipid supplementation in a wide variety of pathological processes in the human body. In the future, available lipids with a proven beneficial effect on CNS regeneration could be included in supportive therapy, but this topic still requires further studies. Based on our and others' research, we review the role of exogenous lipids, pointing to substrates that are crucial in the remyelination process but are omitted in available studies, justifying the properly profiled supply of lipids in the human diet as a supportive therapy during CNS regeneration.


Asunto(s)
Sistema Nervioso Central , Esclerosis Múltiple , Humanos , Ácidos Grasos Monoinsaturados , Esclerosis Múltiple/tratamiento farmacológico , Suplementos Dietéticos
15.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38612804

RESUMEN

Neurodegenerative disorders (NDs) have become increasingly common during the past three decades. Approximately 15% of the total population of the world is affected by some form of NDs, resulting in physical and cognitive disability. The most common NDs include Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Although NDs are caused by a complex interaction of genetic, environmental, and lifestyle variables, neuroinflammation is known to be associated with all NDs, often leading to permanent damage to neurons of the central nervous system. Furthermore, numerous emerging pieces of evidence have demonstrated that inflammation not only supports the progression of NDs but can also serve as an initiator. Hence, various medicines capable of preventing or reducing neuroinflammation have been investigated as ND treatments. While anti-inflammatory medicine has shown promising benefits in several preclinical models, clinical outcomes are often questionable. In this review, we discuss various NDs with their current treatment strategies, the role of neuroinflammation in the pathophysiology of NDs, and the use of anti-inflammatory agents as a potential therapeutic option.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Humanos , Enfermedades Neuroinflamatorias , Inflamación/terapia , Sistema Nervioso Central
16.
Nutrients ; 16(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38613126

RESUMEN

Given the comprehensive examination of the role of fatty acid-rich diets in central nervous system development in children, this study bridges significant gaps in the understanding of dietary effects on neurodevelopment. It delves into the essential functions of fatty acids in neurodevelopment, including their contributions to neuronal membrane formation, neuroinflammatory modulation, neurogenesis, and synaptic plasticity. Despite the acknowledged importance of these nutrients, this review reveals a lack of comprehensive synthesis in current research, particularly regarding the broader spectrum of fatty acids and their optimal levels throughout childhood. By consolidating the existing knowledge and highlighting critical research gaps, such as the effects of fatty acid metabolism on neurodevelopmental disorders and the need for age-specific dietary guidelines, this study sets a foundation for future studies. This underscores the potential of nutritional strategies to significantly influence neurodevelopmental trajectories, advocating an enriched academic and clinical understanding that can inform dietary recommendations and interventions aimed at optimizing neurological health from infancy.


Asunto(s)
Dieta , Neurogénesis , Niño , Humanos , Ácidos Grasos , Valor Nutritivo , Sistema Nervioso Central
17.
Cell Mol Life Sci ; 81(1): 181, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615095

RESUMEN

In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.


Asunto(s)
Vaina de Mielina , Trastornos del Neurodesarrollo , Animales , Cognición , Sistema Nervioso Central , Encéfalo
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(1): 153-158, 2024 Jan 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38615177

RESUMEN

Bipolar affective disorder refers to a category of mood disorders characterized clinically by the presence of both manic or hypomanic episodes and depressive episodes. Lithium stands out as the primary pharmacological intervention for managing bipolar affective disorder. However, its therapeutic dosage closely approaches toxic levels. Toxic symptoms appear when the blood lithium concentration surpasses 1.4 mmol/L, typically giving rise to gastrointestinal and central nervous system reactions. Cardiac toxicity is rare but serious in cases of lithium poisoning. The study reports a case of a patient with bipolar affective disorder who reached a blood lithium concentration of 6.08 mmol/L after the patient took lithium carbonate sustained-release tablets beyond the prescribed dosage daily and concurrently using other mood stabilizers. This resulted in symptoms such as arrhythmia, shock, impaired consciousness, and coarse tremors. Following symptomatic supportive treatment, including blood dialysis, the patient's physical symptoms gradually improved. It is necessary for clinicians to strengthen the prevention and recognition of lithium poisoning.


Asunto(s)
Hemodinámica , Litio , Humanos , Anticonvulsivantes , Arritmias Cardíacas/inducido químicamente , Sistema Nervioso Central
19.
Cells ; 13(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38607045

RESUMEN

In vitro and preclinical in vivo research in the last 35 years has clearly highlighted the crucial physiopathological role of glial cells, namely astrocytes/microglia/oligodendrocytes and satellite glial cells/Schwann cells in the central and peripheral nervous system, respectively. Several possible pharmacological targets to various neurodegenerative disorders and painful conditions have therefore been successfully identified, including receptors and enzymes, and mediators of neuroinflammation. However, the translation of these promising data to a clinical setting is often hampered by both technical and biological difficulties, making it necessary to perform experiments on human cells and models of the various diseases. In this review we will, therefore, summarize the most relevant data on the contribution of glial cells to human pathologies and on their possible pharmacological modulation based on data obtained in post-mortem tissues and in iPSC-derived human brain cells and organoids. The possibility of an in vivo visualization of glia reaction to neuroinflammation in patients will be also discussed.


Asunto(s)
Neuroglía , Enfermedades Neuroinflamatorias , Humanos , Sistema Nervioso Central , Microglía/fisiología , Astrocitos/fisiología
20.
J Neuroinflammation ; 21(1): 97, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627787

RESUMEN

The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.


Asunto(s)
Enfermedades del Sistema Nervioso Central , Receptores Nucleares Huérfanos , Humanos , Receptores X del Hígado , Receptores Nucleares Huérfanos/metabolismo , Sistema Nervioso Central/metabolismo , Inflamación , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...